Конспект лекций по предмету "Модели и методы"

Course-Work.ru Значения линейной формы на выпуклом множестве , Предположим, что задана некоторая система из m-линейных неравенств (или уравнений) с n переменными х1, х2, ..., хn. Система неравенств в случае...
Узнать цену дипломной по вашей теме


Конспект лекций Значения линейной формы на выпуклом множестве

Предположим, что задана некоторая система из m-линейных неравенств (или уравнений) с n переменными х1, х2, ..., хn. Система неравенств в случае совместности определяет некоторое выпуклое множество в n-мерном пространстве, ограниченное или бесконечное (многогранник решений).

Допустим далее, что нам задана некоторая линейная форма от этих переменных, определяющая функцию цели:



¦=c1x1+c2x2+ ... +cnxn



В каждой точке выпуклого множества, т.е. для каждого решения нашей системы, линейная форма ¦ принимает определенное значение. Возникает вопрос: в каких точках выпуклого множества линейная форма ¦ достигает своего наибольшего и наименьшего значения, если, конечно, такие существуют? Решение общей задачи линейного программирования сводится, таким образом, к нахождению точек выпуклого множества, в которых заданная линейная форма достигает оптимального значения, и мы ищем такие точки (х1, х2, ..., хn), координаты которых неотрицательны. Сформулируем одно важное утверждение, облегчающее решение задачи.



þ В тех случаях, когда множество решений задачи линейного программирования образует выпуклый многогранник, линейная форма достигает оптимального значения в одной из его вершин, в связи с чем последние и называются экстремальными точками.



В общем случае, линейная форма ¦=c1x1+c2x2+ ... +cnxn задает гиперплоскость в n-мерном пространстве. При ¦=0 эта гиперплоскость проходит через начало координат. Затем передвигаем эту плоскость параллельно самой себе в направлении вектора P перпендикулярно к этой плоскости. Первая из вершин, в которой линейная форма (гиперплоскость) встретит выпуклый многогранник, будет точкой, в которой линейная форма достигает наименьшего значения, а последняя из вершин - точкой, в которой линейная форма достигает наибольшего значения.

Может случиться, что гиперплоскость окажется параллельной одной из граней или ребер выпуклого многогранника, и тогда линейная форма ¦ достигает своего наименьшего или наибольшего значения в любой точке, лежащей на этом ребре. Но и тогда она достигает эти значения в вершине, лежащей на этом ребре.

Существуют различные методы решения задач линейного программирования. Одним из наиболее простых и наглядных методов решения является графический метод. Этот метод позволяет решать задачи, которые приводят к системам уравнений с двумя или тремя переменными. Большинство задач линейного программирования приводит к системам линейных неравенств с большим числом переменных. Эти задачи решаются симплексным методом.


Не сдавайте скачаную работу преподавателю!
Данную дипломную работу Вы можете использовать как базу для самостоятельного написания выпускного проекта.

Доработать Узнать цену работы по вашей теме

Другие популярные конспекты лекций:

Поделись с друзьями, за репост + 100 мильонов к студенческой карме :

 
Пишем работу самостоятельно:
! Как написать конспект Как правильно подойти к написанию чтобы быстро и информативно все зафиксировать.