Конспект лекций по предмету "Линейное программирование"

Course-Work.ru ТРЕБОВАНИЯ СОВМЕСТНОСТИ УСЛОВИЙ , Вспомним некоторые вопросы из алгебры. Рассмотрим неравенство а´х £ b. Если от неравенства мы хотим перейти к уравнению, то введём...
Узнать цену дипломной по вашей теме


Конспект лекций ТРЕБОВАНИЯ СОВМЕСТНОСТИ УСЛОВИЙ

Вспомним некоторые вопросы из алгебры.

Рассмотрим неравенство а´х £ b. Если от неравенства мы хотим перейти к уравнению, то введём дополнительную переменную у и запишем а´х +у = b, т.е. получим одно уравнение с двумя неизвестными.

В общую постановку задачи оптимизации входят неравенства вида (i =1...т), где п – число неизвестных; т – число неравенств. Если в каждое неравенство добавить неотрицательное неизвестное yi ³ 0 (i = 1...m), то от системы неравенств можно перейти к системе уравнений (i = 1...m).

В этой системе общее число неизвестных N = n+m, где п – число основных неизвестных xj; т – число дополнительных неизвестных yi, которое равно числу уравнений.

Возможны три варианта соотношения величин N и т.

1. Число неизвестных меньше, чем число уравнений: N < m.

Например, , т.е. N =1, т =2. Очевидно, эта система решения не имеет, т.е. нет таких значений х1, которые удовлетворяли бы обоим уравнениям. В этом случае говорят, что система условий несовместна. Значит, если число неизвестных N меньше числа уравнений т, то система решения не имеет и является несовместной.

2. Число неизвестных равно числу уравнений: N = m.

Например, . Нетрудно найти, что решением этой системы будут значения х1 =2, х2=1. Таким образом, линейная система, в которой число неизвестных N равно числу уравнений т, имеет одно решение.

Наличие (2) или отсутствие решений (1) при различных соотношениях числа переменных N и числа уравнений т справедливо только для линейно–независимых уравнений, которые не могут быть получены умножением, делением, сложением, вычитанием исходных уравнений.

Например, пусть есть уравнение 2х = 10, из которого можно получить несколько: х=5; 4х=20; 6х=30 и т.д. Все эти уравнения будут линейно зависимыми, и новых сведений о зависимостях для переменной не содержат. Поэтому в этом примере т=1 (а не 4).

Аналогично в системе



есть только два линейно независимых уравнения, так уравнение (в) есть результат суммирования (а) и (б), а уравнение (г) есть результат деления (в) на 5.

3. Число неизвестных больше числа уравнений: N > m. Например, 2х1 + +х2 = 2. Очевидно, что все значения х1 и х2, лежащие на прямой (рис.2.1) этого уравнения, являются его решением. Значит это уравнение имеет бесчисленное множество решений. Итак, если в системе число неизвестных N больше числа уравнений т, то такая система имеет бесчисленное множество решений.

В случае, когда система имеет более одного возможного решения, может быть поставлена задача оптимизации. При этом суть такой задачи, как мы уже знаем, заключается в том, чтобы из всех допустимых решений, удовлетворяющих ограничениям и граничным условиям, выбрать такое, которое придаёт ЦФ оптимальное, т.е. максимальное или минимальное значение.

Если все ограничения и ЦФ линейны, задача оптимизации, как нам известно, является задачей ЛП.


Не сдавайте скачаную работу преподавателю!
Данную дипломную работу Вы можете использовать как базу для самостоятельного написания выпускного проекта.

Доработать Узнать цену работы по вашей теме
Поделись с друзьями, за репост + 100 мильонов к студенческой карме :

 
Пишем работу самостоятельно:
! Как написать конспект Как правильно подойти к написанию чтобы быстро и информативно все зафиксировать.